
A Dynamic Smagorinsky Model for the Spectral Element Method

The notes below are extensions of the material in the thesis of Philipp Schlatter, ETH Dissertation
16000.

1 Basic Model Equations

The equations of motion for the resolved field, ūi and p̄ are
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where overbar denotes the filtered (or resolved) field that is computed on the computational grid.
Following the standard approach in LES, we do not explicitly apply a filter to the computed field
but instead assume that the restriction of our computed field to the numerical grid constitutes the
filtering procedure. The extra stress term is given by

τij := uiuj − ūiūj , (3)

and needs to be modeled because uiuj involves the unknown subgrid-scale (SGS) quantities, ui and
uj . The Smagorinsky closure for (3) is
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with the resolved strain-rate tensor
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Following the Germano et al. dynamic Smagorinsky (DS) SGS model we define
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where we have introduced a test filter indicated by tilde and α := ˜̄∆/∆̄ is the ratio of the test to
grid filter widths. We further define

Lij := ˜̄ui ˜̄uj − ˜̄uiūj . (8)

The Lilly determination of the Smagorinsky constant leads to the closure

Cdyn :=
1

2

< MijLij >

< MlkMlk >
, (9)

where < . > indicates some type of smoothing process such as filtering, planar averaging, or
Lagrangian averaging. For Cdyn > 0, we take
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otherwise Cs := 0.
As our point of departure for the SEM implementation, we rewrite (1) as

Dūi
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which can be solved using the SE stress formulation developed by Ho (89). Here,
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and closure amounts to determining Cdyn∆̄2. Defining M̂ij := 1
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Mij , we can rewrite (9) as
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which depends only on the ratio of filter widths α and has no explicit dependence on ∆̄.

2 Choice of Test Filter

Elimination of an explicit dependence on ∆̄ in (15) resolves a significant source of ambiguity for
the application of the DS model in complex domains when using general purpose discretizations.
Determination of the filter ratio is relatively straightforward. For example, if one constructs a
test filter that projects onto half of the number of modes (in each space dimension, leading to an
eightfold reduction in three dimensions), α = 2. With the spectral element method, we have the
possibility of projecting from the Nth-order local basis functions onto a basis of order Ñ , with
corresponding α = N/Ñ .

A open question is how best to define the test filter, F such that ˜̄u := F (ū). Choices abound,
and it would seem natural to develop an approach such that the test filter mimics the action of the
Galerkin projection (i.e., the implicit filter) on which the original discretization is based, albeit at
a larger scale. For the velocity field, several reasonable approaches are possible. The first would be
a simple Galerkin projection of the form: Find ˜̄ui ∈ XÑ such that

(v, ˜̄ui) = (v, ūi) ∀ v ∈ XÑ , (16)

where (f, g) is a suitable inner product, e.g., the standard L2 inner product (f, g) :=
∫
Ω

fg dV . A

more elaborate scheme would involve choosing XÑ to be restricted to the manifold of divergence-free
velocity fields. Still more logical, and undoubtedly related to the variational multiscale method of
Hughes and co-workers, would be to choose the inner-product to be related to the unsteady Stokes
operator that is used to project the nonlinear dynamics onto the discrete approximation space for
ū ∈ XN

0 , with XN
0 replaced by XÑ

0 . Such an approach unambiguously gives proper definition of
the boundary conditions, divergence-free conditions, and function continuity requirements for the
test-filtered field.

Note that, for filtering nonlinear terms, the Galerkin procedures such as (16) can be imple-
mented in fully dealiased form at relatively low cost given that all nonlinear terms in (11) are
evaluated in fully dealiased form, that is, on a grid associated with polynomial degree M ≈ 3

2
N .
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Once available, it’s not expensive to collocate the quantities that have already been interpolated
using JM and project them locally onto the Ñ grid by applying JT

Ñ
. A full projection involving

global (albeit diagonal) mass matrices, however, would require simultaneously storing all 30 filtered
fields on the M -mesh, for all elements, and would be too expensive from a storage standpoint.

Unfortunately, while readily defined for the velocity field, the projection operators associated
with the more elaborate function spaces considered above are not unambiguously defined when

computing, say, qij := ˜|S̄|S̄ij , because the continuity and boundary condition requirements in this
case are not well-defined. Inspection of the preceding derivations reveals that the origins of qij are
in the Smagorinsky ansatz and not in well-defined or well-established physical processes. It seems
likely that the DS model is more sensitive to consistency in the choice of test-filter process to all
quantities, rather than in matching the precise relationship between the test and grid filters. A
reasonable starting point, therefore, would be to apply the Boyd filter within each spectral element
either using a sharp cut-off or a steeply damped filter for k > Ñ .

2.1 Commutativity of the Filter

It should be relatively straightforward numerically and analytically, in the context of one- or two-
dimensional SEM model problems, to establish that the Ñ -based filters commute with differentia-
tion up to order Ñ for any reasonable choice of filter.
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